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NUMEROUS SERIES ( III - PART) 

 

ALTERNATIVE SERIES 

 

Alternate series  are series  with variable signs of their members. 

Forms are   1

1 2 3 4

1

........ ( 1)n n

n

a a a a a
∞

−

=

− + − + = −∑  

 

DEF:  (a)   1

1

( 1)n n

n

a
∞

−

=

−∑   converges absolutely if the series ∑
∞

=1n
na  converges 

(b)   1

1

( 1)n n

n

a
∞

−

=

−∑  converges conditionally if it converges AND   series  ∑
∞

=1n
na   diverges 

 

 

 

criteria: 

 

 

 

Leibniz criteria: 

 

Alternative  series  1

1

( 1)n n

n

a
∞

−

=

−∑  converges  if   1       for   n=1,2,3...n na a +>  (Monotonically decreasing)  

 and  lim 0n
n
a

→∞
=  

 

 

 

Abelian criteria: 

 

Series  
1

n n

n

a b
∞

=
∑  converges   if : 

i)  
1

n

n

a
∞

=
∑   converges 

 

ii) numbers   nb  form monotonically limited series  

 

 

 

Dirihle  criteria: 

 

Series 
1

n n

n

a b
∞

=
∑  converges if: 

 

i) partial sums 
1

n

n k

k

S a
=

=∑ are limited 

ii)         nb  monotonically approaches zero when n→∞  
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Theorem (often used in tasks) 

 

If   ( )na  is positive series  such that 
2

1

1
1 ( )    when  n

n

a p
o n

a n n+

= + + →∞    then series  1

1

( 1)n n

n

a
∞

−

=

−∑ : 

 

i) converges  if 0p >  and   
-     converges     if   1

-   converges    if    0 1

p

p

> 
 

< < 

absolutely

conditionally
 

 

ii) diverges if  0p ≤  

 

 

Yet we should remember that: 

 

-   If series is absolutely convergent then it is convergent 

 

- The sum of absolute convergent series does not depend on the order of addition of its members. 

 

- The sum of the conditional convergent series by changing order of addition of its members may have an arbitrary 

value (Riemann's theorem) 

 

 

EXAMPLES 

 

Example  1. 

 

Examine the convergence of  series  
1

1

( 1)n

n n

−∞

=

−
∑  

 

Solution: 

 

Here is 
1

na
n

=   

 

1 1
1

1
n n

n n
< + → >

+
 and we conclude that this is a monotonically decreasing  series, and  

1 1
lim 0
n n→∞

= =
∞

, 

 

and the Leibniz criterion for this series 
1

1

( 1)n

n n

−∞

=

−
∑  tells us that he converges. 

 

What about the absolute convergence? 

 

Look   ∑
∞

=1n
na  . For our series it is  

1

1

n n

∞

=
∑ , and we already said that it diverges, so series  

1

1

( 1)n

n n

−∞

=

−
∑  is not absolutely 

convergent. It is only conditionally convergent. 
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Example  2. 

 

 

Examine the convergence of  series  
2

1

2
( 1)

2

n

n n n

∞

=

−
+ +

∑  

 

Solution: 

 

First, we notice that   
2

2

2n n+ +
> 0 for each n from set N 

 

Further observe that: 

 

2 2

2 2

2 2

2 2

1
2 2

1

( 1)

( 1) 2 2

( 1) 2 2

( 1) 2 ( 1) 2

1 1

( 1) 2 ( 1) 2
n n

n n

n n

n n

n n

n n n n

a a
n n n n

+

+ >

+ >

+ + > +

+ + > +

+ + + + > + +

< → <
+ + + + + +

 

 

Therefore, it is a descending  series, yet to find    
2

1 1
lim 0

2n n n→∞
= =
∞+ +

 

 

So, series 
2

1

2
( 1)

2

n

n n n

∞

=

−
+ +

∑  is convergent by Leibniz criteria. 

 

To investigate the absolute convergence: 

 

2 2
1 1

2 2
( 1)

2 2

n

n nn n n n

∞ ∞

= =

− =
+ + + +

∑ ∑  

 

When  n→∞  we think like this: 

 

 

2 2

2 2 2 2 1

22 n n n nn n n n ++ + +
∼ ∼ ∼ ∼  

 

So, this series is the same "character" as well as series 
1

1

n n

∞

=
∑ , which is divergent. 

 

We conclude that the initial  series 
2

1

2
( 1)

2

n

n n n

∞

=

−
+ +

∑  conditionally convergent, and 
2

1

2

2n n n

∞

= + +
∑ diverges. 
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Example 3. 

 

Examine the convergence of  series  
1

!
( 1)n

n
n

n

n

∞

=

−∑  

 

Solution: 

 

Come here immediately to investigate the absolute convergence    
1 1

! !
( 1)n

n n
n n

n n

n n

∞ ∞

= =

− =∑ ∑   

 

We will use : 

1
1

1

( 1)!

( 1)( 1)!( 1)
lim lim lim lim

! ! ( 1)

nn
n

nn n n n
n

n

n

na n nn

na n n

n

+
+

+→∞ →∞ →∞ →∞

+
+++

= = ⋅ =
+

!n⋅

!n ( 1)

n
n

n
⋅

+
lim

1( 1)

1 1 1
lim lim

1 1
1

n

n n

n n

n n

n

nn

n e

n n

→∞

→∞ →∞

 
= = 

++  

   
   

= = =   +   +
   

 

 

 

Since this series converges absolutely, immediately conclude that the series 
1

!
( 1)n

n
n

n

n

∞

=

−∑  converges. 

 

Example 4. 

Examine the convergence of  series  

2

2
2

cos
1

lnn

n

n

n

π
∞

=

+∑  

 

Solution: 

 

Here is our idea to use Abelian criteria: 

 

Series  
1

n n

n

a b
∞

=
∑  converges   if : 

i)  
1

n

n

a
∞

=
∑   converges 

 

iii) numbers   nb  form monotonically limited series  

 

 

From trigonometry we know that: 

 
2

1cos ( 1) cos
1 1

nn

n n

π π+= −
+ +
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Now look at series  

1
1

2 2
2 2

( 1) cos
( 1)1 cos

ln ln 1

n
n

n n

n

n n n

π
π

+
+∞ ∞

= =

−
−+ = ⋅

+
∑ ∑  

Series   
1

2
2

( 1)

ln

n

n n

+∞

=

−
∑  is convergent and   cos

1n

π

+
 form a monotonic and limited series. 

 

 

Example 5. 

 

 

Examine the convergence of  series   
50

1

ln
sin

4n

n n

n

π∞

=
∑  

 

Solution: 

 

Here we use Dirihle  criteria: 

 

Series 
1

n n

n

a b
∞

=
∑  converges if: 

 

ii) partial sums 
1

n

n k

k

S a
=

=∑ are limited 

ii)         nb  monotonically approaches zero when n→∞  

 

 

We will use a result of the previous files:  
1

1
sin

4
sin

8

n

k

kπ
π

=

<∑    

 

nb =
50ln n

n
 monotonically approaches zero when n→∞  

 

 
50 49 48ln ln ln

lim 50 lim 50 49 lim . 0
n n n

n n n
etc

n n n→∞ →∞ →∞

∞ 
= = = ⋅ = = ∞ 

 

 

So, series converges. 

 

Example 6. 

 

Examine the convergence of  series   1

1

(2 1)!!
( 1)

(2 )!!

p

n

n

n

n

∞
−

=

 −
−  

 
∑  

 

Solution: 
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The idea is to do the examination of absolute convergence  series 
1

(2 1)!!

(2 )!!

p

n

n

n

∞

=

 −
 
 

∑  

 

This task we have worked in one of the previous files: 

 

1

(2 1)!!

(2 )!! (2 1)!! (2 2)!! (2 1)!! (2 2)(2 )!! 2 2

(2 1)!! (2 )!! (2 1)(2 1)!! (2 )!! 2 1(2 1)!!

(2 2)!!

p

p p p

n

p

n

n

na n n n n n n

a n n n n n nn

n

+

 −
     − + − + +  = = = =     + + − +      +
 + 

 

 

Now pack a little the term  and use binomial formula: 

0 1 1 2 2

2 2

2

2

2

2 2 2 1 1 1
1

2 1 2 1 2 1

1 1 1
1 ( ) 1 ( ) 1 ( ) ...

0 1 22 1 2 1 2 1

( 1) 1
1 ( )

2 1 2(2 1)

1
1 ( )

2 1

1
1 ( )

1
2( )

2

/ 2 1
1 ( )  whe

1/ 2

p p p

p p p

n n

n n n

p p p

n n n

p p p
o

n n n

p
o

n n

p
o
n

n

p
o

n n

− −

+ + +     
= = + =     + + +     

     
= + + +     

+ + +     

+
= + + +

+ +

= + +
+

= + +
+

= + +
+

2

n  n

/ 2 1
1 ( ) 
p

o
n n

→∞

= + +

 

Now, we use: 

If   ( )na  is positive series  such that 
2

1

1
1 ( )    when  n

n

a p
o n

a n n+

= + + →∞    then series  1

1

( 1)n n

n

a
∞

−

=

−∑ : 

 

iii) converges  if 0p >  and   
-     converges     if   1

-   converges    if    0 1

p

p

> 
 

< < 

absolutely

conditionally
 

 

iv) diverges if  0p ≤  

We have: 

 

Series converges  if / 2 0 0p p> → >   and 
- converges absolutely for   / 2 1 2

- converges conditionally for   0 / 2 1 0 2

p p

p p

 > → > 
 

< < → < <  

 

 

 

Series diverges  for / 2 0 0p p≤ → ≤  

                                                                                                                        


