ALTERNATIVE SERIES

Alternate series are series with variable signs of their members.
Forms are $a_{1}-a_{2}+a_{3}-a_{4}+\ldots \ldots . .=\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$
DEF: (a) $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges absolutely if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges
(b) $\quad \sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges conditionally if it converges AND series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges

criteria:

Leibniz criteria:

Alternative series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges if $a_{n}>a_{n+1}$ for $\mathrm{n}=1,2,3 \ldots$ (Monotonically decreasing) and $\lim _{n \rightarrow \infty} a_{n}=0$

Abelian criteria:

Series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges if:
i) $\sum_{n=1}^{\infty} a_{n}$ converges
ii) numbers b_{n} form monotonically limited series

Dirihle criteria:

Series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges if:
i) partial sums $S_{n}=\sum_{k=1}^{n} a_{k}$ are limited
ii) $\quad b_{n}$ monotonically approaches zero when $n \rightarrow \infty$

Theorem (often used in tasks)
If $\left(a_{n}\right)$ is positive series such that $\frac{a_{n}}{a_{n+1}}=1+\frac{p}{n}+o\left(\frac{1}{n^{2}}\right)$ when $n \rightarrow \infty$ then series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$:
i) converges if $p>0$ and $\left\{\begin{array}{c}-\quad \text { converges absolutely if } p>1 \\ - \text { converges conditionally if } 0<p<1\end{array}\right\}$
ii) diverges if $p \leq 0$

Yet we should remember that:

- If series is absolutely convergent then it is convergent
- The sum of absolute convergent series does not depend on the order of addition of its members.
- The sum of the conditional convergent series by changing order of addition of its members may have an arbitrary value (Riemann's theorem)

EXAMPLES

Example 1.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

Solution:

Here is $a_{n}=\frac{1}{n}$
$n<n+1 \rightarrow \frac{1}{n}>\frac{1}{n+1}$ and we conclude that this is a monotonically decreasing series, and $\lim _{n \rightarrow \infty} \frac{1}{n}=\frac{1}{\infty}=0$,
and the Leibniz criterion for this series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ tells us that he converges.
What about the absolute convergence?
Look $\sum_{n=1}^{\infty}\left|a_{n}\right|$. For our series it is $\sum_{n=1}^{\infty} \frac{1}{n}$, and we already said that it diverges, so series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is not absolutely convergent. It is only conditionally convergent.

Example 2.

Examine the convergence of series $\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{\sqrt{n^{2}+2}+n}$

Solution:

First, we notice that $\frac{2}{\sqrt{n^{2}+2}+n}>0$ for each n from set N
Further observe that:
$\begin{aligned} & n+1>n \\ & (n+1)^{2}>n^{2} \\ & (n+1)^{2}+2>n^{2}+2 \\ & \sqrt{(n+1)^{2}+2}>\sqrt{n^{2}+2} \\ & \sqrt{(n+1)^{2}+2}+(n+1)>\sqrt{n^{2}+2}+n \\ & \frac{1}{\sqrt{(n+1)^{2}+2}+(n+1)}<\frac{1}{\sqrt{n^{2}+2}+n}\end{aligned} a_{n+1}<a_{n}$

Therefore, it is a descending series, yet to find $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+2}+n}=\frac{1}{\infty}=0$

So, series $\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{\sqrt{n^{2}+2}+n}$ is convergent by Leibniz criteria.
To investigate the absolute convergence:
$\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{2}{\sqrt{n^{2}+2}+n}\right|=\sum_{n=1}^{\infty} \frac{2}{\sqrt{n^{2}+2}+n}$

When $n \rightarrow \infty$ we think like this:
$\frac{2}{\sqrt{n^{2}+2}+n} \sim \frac{2}{\sqrt{n^{2}}+n} \sim \frac{2}{n+n} \sim \frac{2}{2 n} \sim \frac{1}{n}$
So, this series is the same "character" as well as series $\sum_{n=1}^{\infty} \frac{1}{n}$, which is divergent.

We conclude that the initial series $\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{\sqrt{n^{2}+2}+n}$ conditionally convergent, and $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n^{2}+2}+n}$ diverges.

Example 3.

Examine the convergence of series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n^{n}}$

Solution:

Come here immediately to investigate the absolute convergence $\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{n!}{n^{n}}\right|=\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
We will use :
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!} \cdot \frac{n^{n}}{(n+1)^{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1) \cdot n!}{n!} \cdot \frac{n^{n}}{(n+1)(n+1)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=$
$=\lim _{n \rightarrow \infty}\left(\frac{1}{\frac{n+1}{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right)^{n}=\frac{1}{e}$

Since this series converges absolutely, immediately conclude that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n^{n}}$ converges.

Example 4.

Examine the convergence of series $\sum_{n=2}^{\infty} \frac{\cos \frac{\pi n^{2}}{n+1}}{\ln ^{2} n}$

Solution:

Here is our idea to use Abelian criteria:

Series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges if:
i) $\sum_{n=1}^{\infty} a_{n}$ converges
iii) numbers b_{n} form monotonically limited series

From trigonometry we know that:
$\cos \frac{\pi n^{2}}{n+1}=(-1)^{n+1} \cos \frac{\pi}{n+1}$

Now look at series $\sum_{n=2}^{\infty} \frac{(-1)^{n+1} \cos \frac{\pi}{n+1}}{\ln ^{2} n}=\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln ^{2} n} \cdot \cos \frac{\pi}{n+1}$
Series $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln ^{2} n}$ is convergent and $\cos \frac{\pi}{n+1}$ form a monotonic and limited series.

Example 5.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{\ln ^{50} n}{n} \sin \frac{n \pi}{4}$

Solution:

Here we use Dirihle criteria:

Series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges if:
ii) partial sums $S_{n}=\sum_{k=1}^{n} a_{k}$ are limited
ii) $\quad b_{n}$ monotonically approaches zero when $n \rightarrow \infty$

We will use a result of the previous files: $\left|\sum_{k=1}^{n} \sin \frac{k \pi}{4}\right|<\frac{1}{\sin \frac{\pi}{8}}$
$b_{n}=\frac{\ln ^{50} n}{n}$ monotonically approaches zero when $n \rightarrow \infty$
$\lim _{n \rightarrow \infty} \frac{\ln ^{50} n}{n}=\left(\frac{\infty}{\infty}\right)=50 \lim _{n \rightarrow \infty} \frac{\ln ^{49} n}{n}=50 \cdot 49 \lim _{n \rightarrow \infty} \frac{\ln ^{48} n}{n}=$ etc. $=0$
So, series converges.

Example 6.

Examine the convergence of series $\sum_{n=1}^{\infty}(-1)^{n-1}\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{p}$

Solution:

The idea is to do the examination of absolute convergence series $\sum_{n=1}^{\infty}\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{p}$
This task we have worked in one of the previous files:
$\frac{a_{n}}{a_{n+1}}=\frac{\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{p}}{\left[\frac{(2 n+1)!!}{(2 n+2)!!}\right]^{p}}=\left[\frac{(2 n-1)!!}{(2 n+1)!!} \frac{(2 n+2)!!}{(2 n)!!}\right]^{p}=\left[\frac{(2 n-1)!!}{(2 n+1)(2 n-1)!!} \frac{(2 n+2)(2 n)!!}{(2 n)!!}\right]^{p}=\left[\frac{2 n+2}{2 n+1}\right]^{p}$
Now pack a little the term and use binomial formula:
$\left[\frac{2 n+2}{2 n+1}\right]^{p}=\left[\frac{2 n+1+1}{2 n+1}\right]^{p}=\left[1+\frac{1}{2 n+1}\right]^{p}=$
$=\binom{p}{0} 1^{p}\left(\frac{1}{2 n+1}\right)^{0}+\binom{p}{1} 1^{p-1}\left(\frac{1}{2 n+1}\right)^{1}+\binom{p}{2} 1^{p-2}\left(\frac{1}{2 n+1}\right)^{2}+\ldots$
$=1+\frac{p}{2 n+1}+\left\lvert\, \frac{p(p+1)}{2(2 n+1)^{2}}+o\left(\frac{1}{n^{2}}\right)\right.$
$=1+\frac{p}{2 n+1}+o\left(\frac{1}{n^{2}}\right)$
$=1+\frac{p}{2\left(n+\frac{1}{2}\right)}+o\left(\frac{1}{n^{2}}\right)$
$=1+\frac{p / 2}{n+1 / 2}+o\left(\frac{1}{n^{2}}\right)$ when $\mathrm{n} \rightarrow \infty$
$=1+\frac{p / 2}{n}+o\left(\frac{1}{n^{2}}\right)$
Now, we use:
If $\left(a_{n}\right)$ is positive series such that $\frac{a_{n}}{a_{n+1}}=1+\frac{p}{n}+o\left(\frac{1}{n^{2}}\right)$ when $n \rightarrow \infty$ then series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$:
iii) converges if $p>0$ and $\left\{\begin{array}{l}- \text { converges absolutely if } p>1 \\ - \text { converges conditionally if } 0<p<1\end{array}\right\}$
iv) diverges if $p \leq 0$

We have:
Series converges if $p / 2>0 \rightarrow p>0$ and $\left\{\begin{array}{r}\text { - converges absolutely for } p / 2>1 \rightarrow p>2 \\ \text { - converges conditionally for } 0<p / 2<1 \rightarrow 0<p<2\end{array}\right\}$

Series diverges for $p / 2 \leq 0 \rightarrow p \leq 0$

